Questions are for both separate science and combined science students unless indicated in the question

Q1.

A titration measures the volumes of an acid and an alkali that neutralise each other.

Figure 1 shows the apparatus used.

(a) Name the pieces of equipment labelled A, B and C in Figure 1. (chemistry only)
Choose answers from the box.

beaker	burette	conical flask	
measuring cylinder	pipette	test tube	
A			
В			
D			
С			

The	volume of acid added is then read from equipment C.	
(b)	Name a suitable indicator for use in Step 2 of the titration. (chemistry only)	
(c)	Give one observation that shows the alkali is neutralised. (chemistry only)	(1)
		(1)
(d)	Give two ways to make sure that the volume of acid added is accurate. (chemistry only)	
	1	
	2	
		(2)

In Step 2 in Figure 1 the acid is added to the alkali until the solution is neutralised.

(e) Figure 2 shows the reading on equipment C at the end of Step 2.

Figure 2

What is the reading on equipment C in Figure 2? (chemistry only)

Tick (✓) one box.

16.4 cm ³	
16.6 cm ³	
17.4 cm ³	
17.6 cm ³	

(1)

(f) A student did a different titration	(f)	((f)	A stude	ent did	a di	fferent	titratio	n
--	-----	---	-----	---------	---------	------	---------	----------	---

The table below shows the results.

	Trial 1	Trial 2	Trial 3
Volume of acid added in cm ³	25.3	23.7	23.6

Which **two** results should be used to calculate the mean volume of acid added? **(chemistry only)**

	Tick (✓) one box.	
	Trial 1 and Trial 2	
	Trial 1 and Trial 3	
	Trial 2 and Trial 3	
		(1)
(g)	A salt is produced when an acid neutralises an alkali.	
	Barium chloride is a salt containing the ions Ba ²⁺ and Cl ⁻	
	What is the formula of barium chloride?	
	Tick (✓) one box.	
	BaCl Ba2Cl Ba2Cl2	
	(Total 10 m	(1) arks)

(1)

	ヿ	1
ι	J	Z

This question is about acids and alkalis.

(a) Acids and alkalis are substances that produce ions in aqueous solution.

Draw **one** line from each substance to the ion always produced by that substance in aqueous solution.

Ion always

	Substance	produced in aqueous solution	
		CI-	
	Acid	H+	
		Na+	
	Alkali	OH-	
		SO ₄ 2-	(0)
(b)	What type of aqueous sol	lution has a pH of 11?	(2)
	Tick (✓) one box.		
	Acidic		
	Alkaline		
	Neutral		

Burette

Measuring cylinder

A student determined the reacting volumes of hydrochloric acid and sodium hydroxide solution by titration.	
This is the method used.	
1. Measure 25.0 cm³ of the sodium hydroxide solution.	
2. Add the sodium hydroxide solution to a conical flask.	
3. Add 3 drops of indicator to the sodium hydroxide solution.	
4. Add the hydrochloric acid drop by drop until the indicator changes colour.	
5. Record the volume of the hydrochloric acid added.	
6. Repeat steps 1 to 5 three more times.	
(c) Which piece of equipment should be used to measure 25.0 cm³ of the sodium hydroxide solution in step 1? (chemistry only)	
Tick (√) one box.	
Beaker Pipette Ruler	
	41
 (d) Which piece of equipment should be used to add the hydrochloric acid drop by drop in step 4? (chemistry only) Tick (✓) one box. 	1)
Balance	

(1)

The table below shows the results.

Trial	1	2	3	4
Volume of hydrochloric acid added in cm ³	24.3	24.5	28.1	24.4

Trial 1 Trial 2 Trial 3 Trial 4
Suggest one reason for the enemalous result in the table above. (shewister, only
Suggest one reason for the anomalous result in the table above. (chemistry only
The student used a solution of sodium hydroxide of concentration 4.00 g/dm ³ .
The student used a solution of sodium hydroxide of concentration 4.00 g/dm³. Calculate the mass of sodium hydroxide in 25.0 cm³ of this solution.
Calculate the mass of sodium hydroxide in 25.0 cm³ of this solution.
Calculate the mass of sodium hydroxide in 25.0 cm³ of this solution.
Calculate the mass of sodium hydroxide in 25.0 cm³ of this solution.
Calculate the mass of sodium hydroxide in 25.0 cm³ of this solution.
Calculate the mass of sodium hydroxide in 25.0 cm³ of this solution.
Calculate the mass of sodium hydroxide in 25.0 cm³ of this solution.

Q3.

This question is about acids.

A student added four metals, ${\bf A},\,{\bf B},\,{\bf C}$ and ${\bf D}$ to hydrochloric acid.

Figure 1 shows the rate of bubbling in each tube.

Use F	Figure 1 to answer parts (a) and (b).	
(a)	Which metal is copper?	
	Tick (✓) one box.	
	A B C D	(1)
(b)	Which metal is the most reactive?	
	Tick (✓) one box.	
	A	(1)
(c)	A metal oxide reacts with an acid to produce zinc sulfate and water.	()
	Name the metal oxide and the acid used in this reaction.	
	Name of metal oxide	
	Name of acid	
		(2)

Draw \mbox{one} line from each pH to the colour of universal indicator in a solution with that pH.

рН	universal indicator
	Blue
1	Green
	Purple
7	Red
	Yellow

A student reacts an acid with an alkali in a titration.

(e) What is the type of reaction when an acid reacts with an alkali?

Tick (✓) one box.

Combustion

Decomposition

Neutralisation

(1)

(2)

(f) **Figure 2** shows a piece of equipment used to measure the volume of the acid in the titration.

Figure 2

What is the name of this piece of equipment? (chemistry only)

Tick (✓) one box.

Burette	
Pipette	
Syringe	
Tube	

(1)

(Total 8 marks)